

Alfa Laval Unique Mixproof Tankentleerung

Doppelsitzventile

Einführung

Das Ventil Alfa Laval Unique Mixproof Tankentleerung ist ein vielseitiges, hochflexibles Doppelsperr- und Entlüftungsventil für das sichere und effiziente Management von Flüssigkeiten an Kreuzungspunkten in Matrixrohrleitungssystemen. Das Ventil wurde speziell für die Montage direkt auf dem Tankboden oder an der Wand an den Ein- und Auslässen entwickelt und ermöglicht das sichere Handling von zwei verschiedenen Produkten oder Flüssigkeiten durch dasselbe Ventil. Es bietet volle Entleerbarkeit und Reinigbarkeit bis zum Tank ohne Risiko einer Kreuzkontamination.

Durch die modulare Bauweise und eine Vielzahl von Optionen kann das Ventil an jede Prozessanforderung angepasst werden und ermöglicht so den Einsatz von zwei unterschiedlichen Produkten in Rohrleitung und Tank.

Einsatzbereich

Das Alfa Laval Unique Mixproof TO-Ventil wurde für das kontinuierliche Volumenstrommanagement und die Prozesssicherheit in hygienischen Tankein- und -auslässen in der Molkerei-, Lebensmittel- und Getränkeindustrie und vielen anderen Branchen entwickelt.

Vorteile

- Erhöhte Produktsicherheit
- Kostengünstiger, auslaufsicherer Betrieb
- Optimierte Anlageneffizienz und verbesserte Reinigbarkeit
- Leckageerkennung und Leckageraumreinigung
- Konfigurierbar, um Ihre spezifischen Anforderungen zu erfüllen

Standardausführung

Das Alfa Laval Mixproof TO-Ventil umfasst eine Reihe von grundlegenden Komponenten, einschließlich Ventilgehäuse, Ventilkegel, Stellantrieb und Zubehör für einen breiten Einsatzbereich. Es gibt zwei Versionen: Das Unique Mixproof TO-Ventil und das Unique Mixproof TO-Ventil mit externer Reinigung. Es ist möglich, das Unique Mixproof TO in einer horizontalen Position zu einzubauen.


Das Ventilgehäuse ist entweder mit einem Tankflansch oder einem Stichflansch mit einer Klemme verbunden und kann nach leichtem Lösen der Klemme in jede beliebige Position gedreht werden. Der Tankflansch wird mit TÜV-Zulassung AD 2000 und Abnahmeprüfzeugnis 3.1 nach EN10204 geliefert und direkt in den Tank eingeschweißt. Bitte beachten Sie, dass es wichtig ist, die Schweißrichtlinien in den Betriebsanleitungen zu beachten.

Leckageerkennungslöcher ermöglichen die Sichtkontrolle ohne Demontage der Membran und somit eine frühzeitige Erkennung von Verschleißteilen. Die einfach ausbaubaren Teile tragen zu einem verlässlichen Betrieb und zu reduzierten Wartungskosten bei.

Das Ventil kann zudem für die Überwachung und Steuerung des Ventils mit Alfa Laval ThinkTop V50 und V70 ausgestattet werden.

Arbeitsprinzip

Das Alfa Laval Unique Mixproof TO-Ventil ist ein federschließendes Ventil (NC), das mithilfe von Druckluft aus der Ferne gesteuert wird.

Das Ventil hat zwei unabhängige Kegel und Dichtungen zur Trennung der Flüssigkeiten; der Raum zwischen den Dichtungen bildet bei jedem Betriebszustand eine Leckagekammer bei atmosphärischem Druck. Leckage tritt nur selten auf, aber sollte sie auftreten, läuft das Produkt in die Leckagekammer und tritt durch den Bodenauslass aus, so dass es leicht zu erkennen ist.

Bei offenem Ventil ist die Leckagekammer geschlossen. Das Produkt fließt dann vom Tank zur Leitung. Die radiale Bauweise des Ventils sorgt dafür, dass während des Ventilbetriebs praktisch kein Produkt verschüttet wird. Es ist möglich, die Ventilreinigung an die Anforderungen individueller Prozessvorgaben anzupassen.

TECHNISCHE DATEN

Temperaturbereich:

Druck		
Max. Produktdruck in der Rohrleitung:	1000 kPa (10 bar)	
Min. Produktdruck:	Vakuum	
Luftdruck:	Max. 800 kPa (8 bar)	
Temperatur		

ATEX		
Klassifizierung:	∥ 2 G D*	

-5 °C bis +125 °C (abhängig vom Gummiwerkstoff)

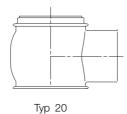
*Dieses Gerät fällt nicht in den Anwendungsbereich der Richtlinie 2014/34/EU und muss keine separate CE-Kennzeichnung gemäß der Richtlinie tragen, da das Gerät keine eigene Zündquelle hat.

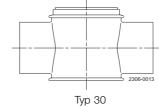
Hinweis! Um Unique Mixproof-Ventile in ATEX-Umgebungen zu verwenden, muss bei den Ventiltypen, bei denen das Ventil mit montierter Abdeckung geliefert wird, die blaue Kunststoffabdeckung am unteren Stopfen entfernt werden

Physikalische Daten

Materialien	
Produktberührte Edelstahlteile:	1.4404 (316L)
Sonstige Stahlteile:	1.4301 (304)

Oberflächengüte - wählen Sie aus den folgenden aus:	
Innen/außen matt (gestrahlt)	Ra<1,6 µm
Innen blank (poliert)	Ra<0,8 µm
Innen blank (innen poliert)	Ra<0,8 µ m


Hinweis! Die Ra-Werte gelten nur für die Innenflächen.


Produktberührte Dichtungen:	EPDM	

Sonstige Dichtungen:		
CIP-Dichtungen:	EPDM	
Dichtungen des Stellantriebs:	NBR	
Führungsbänder:	PTFE	

Hinweis! Die Ra-Werte gelten nur für die Innenflächen.

Ventilgehäusekombinationen

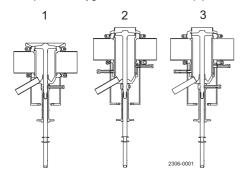
SpiralClean

Das SpiralClean-System von Alfa Laval reinigt die Ventilkegel mit Balancer sowie die Leckagekammer.

Das System reinigt effizienter und benötigt weniger Reinigungsflüssigkeit. Aufgrund der Strömungsrichtung erreicht die CIP-Flüssigkeit alle Oberflächen schneller als bei konventionellen Systemen.

Auswahlhilfe

Die nachfolgenden Zeichnungen geben Ihnen einen Überblick über die verfügbaren Optionen, die Sie zum Anpassen des Ventils an Ihren Prozess wählen können. Das veranschaulicht die Vielseitigkeit des Unique-Tankentleerungsventils mit Mischungsprüfung.


Das Unique-TO-Konzept enthält in beliebiger Kombination: Ventilteller mit Balancer in der Rohrleitung, Sitzhub, CIP für die Verschlüsse und Leckageräume.

Unique-TO Größenflexibilität

- 1. DN50 mit Tankflansch, Stellantrieb Gruppe 3 inkl. Sitzhub und Sitzschub
- 2. ISO63.5 (2½") mit Tankflansch, Stellantrieb Gruppe 4 inkl. Sitzhub und Sitzschub
- 3. ISO76.1 (3") mit Spirale am oberen Ventilkegel mit Balancer und Tankflansch, Stellantrieb Gruppe 5 inkl. Sitzhub und Sitzschub
- 4. DN150, mit SpiralClean für Leckagekammer, oberer Ventilkegel mit Balancer, Gruppe 4 Basisstellantrieb
- 5. ISO.63.5 (21/2") mit Tankflansch, Stellantrieb Gruppe 4 inkl. Sitzhub und Sitzschub

Unique-TO - Hygienische Flexibilität (SpiralClean-Optionen)

- 1. Externe CIP-Reinigung der Leckagekammer
- 2. Externes CIP des oberen Ventilkegels mit Balancer
- 3. Externe CIP-Reinigung der Leckagekammer und des oberen Ventilkegels mit Balancer

Standardausführungen

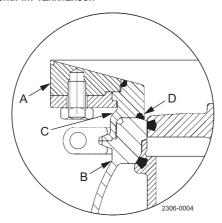
Um Sie bei der Auswahl zu unterstützen, haben wir einige Standardkonfigurationen zusammengestellt:

- Unique-TO
- Unique-TO mit externer Reinigung.

Sie können diese direkt auswählen oder durch zusätzliche Leistungsmerkmale ergänzen. So erhalten Sie das für Ihre Erfordernisse passende Ventil.

Unique-TO erfüllt die typischen Ansprüche eines Prozessventils in der Nahrungsmittel- und Getränkeindustrie.

- Stellantrieb mit integriertem Sitzhub.
- Standard-Ventilteller mit Balancer in der Rohrleitung.


Das Tankentleerungsventil Unique-TO mit externer Reinigung erfüllt die höchsten Anforderungen für hygienische Verarbeitung.

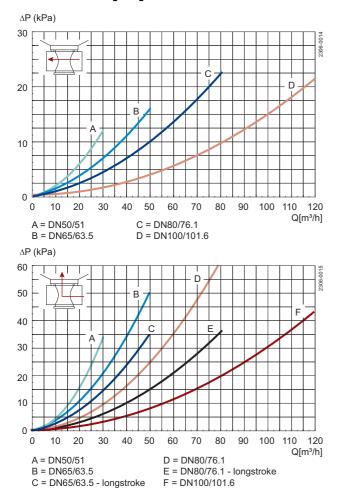
- Stellantrieb mit integriertem Sitzhub.
- Standard-Ventilteller mit Balancer in der Rohrleitung.
- SpiralClean des Leckageraums und des Ventilkegels mit Balancer

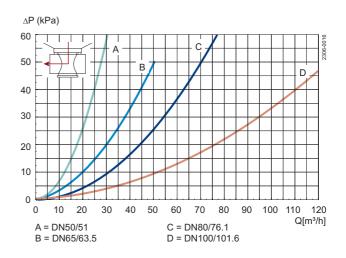
Optionen

- Gewindestutzen oder Klemmverbindungen gemäß erforderlicher Norm.
- Steuerungs- und Indikatoreinheit: ThinkTop
- Seitenindikator zur Stellungsrückmeldung des oberen Sitzhubs
- Produktberührte Dichtungen aus HNBR, NBR oder FPM
- Verschiedene Oberflächengüten innen und außen
- 3A (Hygienestandard) auf Anfrage
- Blindflansch
- Umbauflansch, mit dem ein SMP-TO-Ventil durch Wiederverwendung des vorhandenen SMP-TO Tankflansches ersetzt werden kann siehe Abb. 1.
- Tankverbindung wird separat geliefert.

Abb. 1
Umbau eines SMP-TO-Ventils zu Unique-TO-Ventil im Tankflansch

- A. -SMP-TO Tankflansch
- B. Unique Mixproof TO-Ventil
- C. Umbauflansch
- D. O-Ring für Umbauflansch


Wenn Unique-TO über einen Alfa Laval Konversionsflansch an einem SMP-TO-Flansch angebaut ist, sind 28 mm zur Ventilhöhe (A1-A4) hinzuzurechnen.


Gr	·öße	− Max. Größe der	Max.	Stellantriebsgröße	Stellantriebsgröße	Öffnungsdruck in der	
Zoll	DIN	Tankdr		3-Basic	4-Basic	5-Basic	Rohrleitung bei 6 bar
2011	Dirt	railinei (IIIII)	(kPa) (ø120x230)		(ø157x252)	(ø186x281)	Luftdruck (kPa)
51	DN50	ø 9	400	Standard			1000
63.5	DN65	ø 15	450		Standard		1000
63.5	DN65	ø31	600			Langhub	1000
76.1	DN80	ø 15	450		Standard		1000
76.1	DN80	ø31	600			Langhub	1000
101.6	DN100	ø 31	450			Standard	1000
101.6	DN100	ø 15	350		Option		1000
	DN125	ø 33	350			Standard	1000
	DN125	ø 15	250		Option		1000
	DN150	ø 33	350			Standard	1000
	DN150	ø 15	250		Option		1000

Hinweise:

Der max. Druck im Tank bedeutet, dass ein höherer Druck im Tank das Ventil öffnet. Es ist möglich, das Ventil durch 10 bar (1000 kPa) in der Rohrleitung zu öffnen. Beim Schließen des Ventils darf der Druck nicht höher sein als der "Max. Tankdruck".

Druckabfall-/Leistungsdiagramme

Hinweis!

Für die Diagramme gilt Folgendes: Medium: Wasser (20 °C)

Messung: Gemäß VDI 2173

Druckluft- und CIP-Verbrauch

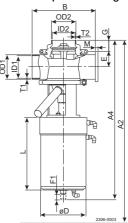
Größe DN/AD							_	.N.I	Langhub					
Größe	DN/AD DN						DN	/AD	DN					
ISO-DIN	51	63.5	76.1	101.6	50	65	80	100	125	150	63.5	76.1	65	80
Druckluftverbrauch für Sitzhub mit														
Balancer	0.20	0.40	0.40	0.62	0.00	0.40	0.40	0.60	0.60	0.60	0.40	0.40	0.40	0.40
Liter = Volumen bei atmosphärischem	0.20	0.40	0.40	0.62	0.20	0.40	0.40	0.62	0.62	0.62	0.40	0.40	0.40	0.40
Druck														
Druckluftverbrauch für Tank-Sitzhub														
Liter = Volumen bei atmosphärischem	1.10	0.13	0.13	0.21	1.10	0.13	0.13	0.21	0.21	0.21	0.13	0.13	0.13	0.13
Druck														
Druckluftverbrauch für Hauptbewegung														
Liter = Volumen bei atmosphärischem	0.86	1.63	1.63	2.79	0.86	1.62	1.62	2.79	2.79	2.79	1.63	1.63	1.62	1.62
Druck														
Kv-Wert für CIP-Sitzhub mit Balancer	1.50	0.50	0.50	1 00	1 50	0.50	0.50	1 00	0.70	0.70	0.50	0.50	0.50	0.50
[m ³ /h]	1.50	2.50	2.50	1.90	1.50	2.50	2.50	1.90	3.70	3.70	2.50	2.50	2.50	2.50
Kv-Wert für Tank-Sitzhub	0.00	1.00	1 00	1 40	0.00	1 00	1 00	1 10	0.40	0.10	1.00	1.00	1.00	1.00
[m ³ /h]	0.90	1.90	1.90	1.40	0.90	1.90	1.90	1.40	3.10	3.10	1.90	1.90	1.90	1.90
Kv-Wert für SpiralClean-Welle CIP	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
[m ³ /h]	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Kv-Wert für SpiralClean-Welle CIP in	0.05	0.00	0.00	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Leckageraum [m ³ /h]	0.25	0.29	0.29	0.29	0.25	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29	0.29

Hinweis!

Empfohlener Mindestdruck für SpiralClean: 2 bar.

Formel zur Berechnung des CIP-Volumenstroms während des Sitzhubs: (bei Flüssigkeiten mit vergleichbarer Viskosität und Dichte wie Wasser):

$$Q = Kv \cdot \sqrt{\Delta p}$$


 $\label{eq:Q} \begin{array}{l} {\sf Q} = {\sf CIP} \mbox{ - Fluss (m}^3/h). \\ {\sf Kv} = {\sf Kv} \mbox{ Wert aus der obigen Tabelle.} \end{array}$

 Δ p = CIP Druck (bar)

Maße (mm)

Unique-TO an Tankflansch angeschlossen

Unique-TO an Stumpfflansch angeschlossen

A1 + A2 = Min. erforderlicher Freiraum, damit der Stellantrieb und die Ventilinnenteile aus dem Ventilgehäuse gehoben werden können. Bei installiertem ThinkTop 180 mm hinzurechnen.

Größe		DN.	/AD				D	N		DN/AD		D	N		
ISO-DIN	51 63.5 70		76.1	101.6	50	65	80	100	125	150	63.5	76.1	65	80	
A1 min. Abmessung. Unique-TO	579	646	659	753	577	652	667	755	805	890	700	713	706	721	
A1 min. Abmessung. Unique-TO mit externer															
Reinigung	616	686	699	813	614	692	707	815	865		740	753	746	761	
A2 min. Abmessung Unique-TO	588	655	668	762	586	661	676	764	814	899	709	722	715	730	
A2 min. Abmessung Unique-TO mit externer Reinigung	625	695	708	822	623	701	716	824	874		749	762	755	770	
A3 Unique-TO	468	526	526	594	468	526	526	594	620	680	575	575	575	575	
A3 Unique-TO mit externer Reinigung	505	566	566	654	505	566	566	654	680		615	615	615	615	
A4 Unique-TO	477	535	535	603	477	535	535	603	629	689	584	584	584	584	
A4 Unique-TO mit externer Reinigung	514	575	575	663	514	575	575	663	689		624	624	624	624	
В	220	220	220	300	220	220	220	300	300	300	220	220	220	220	
AD1	51	63.5	76.1	101.6	53	70	85	104	129	154	63.5	76.1	70	85	
<u>ID1</u>	47.8	60.3	72.9	97.6	50	66	81	100	125	150	60.3	72.9	66	81	
<u>t1</u>	1.6	1.6	1.6	2.0	1.5	2.0	2.0	2.0	2.0	2.0	1.6	1.6	2.0	2.0	
<u>E</u>	36.9	43.2	49.5	61.8	38	46	53.5	63	75.5	88	43.2	49.5	46	53.5	
<u>F1</u>	31.5	38	38	59	31.5	38	38	59	59	59	59	59	59	59	
F2 (Tankverschluss)	5	5	5	5	5	5	5	5	5	5	5	5	5	5	
G	40	40	40	40	40	40	40	40	40	40	40	40	40	40	
<u>H</u>	31	31	31	31	31	31	31	31	31	31	31	31	31	31	
<u>ø</u> D	120	157	157	186	120	157	157	186	186	186	186	186	186	186	
<u>L</u>	230	252	252	281	230	252	252	281	281	281	281	281	281	281	
AD2	51	63.5	76.1	101.6	53	70	85	104	129	129	63.5	76.1	70	85	
<u>ID2</u>	47.8	60.3	72.9	97.6	50	66	81	100	125	125	60.3	72.9	66	81	
<u>t2</u>	1.6	1.6	1.6	2.0	1.5	2.0	2.0	2.0	2.0	2.0	1.6	1.6	2.0	2.0	
øJ	159	199	199	199	159	199	199	199	199	199	199	199	199	199	
øK	155	195	195	195	155	195	195	195	195	195	195	195	195	195	
M/ISO-Klemme	21	21	21	21							21	21			
M/DIN-Klemme					21	21	21	21	28	28			21	21	
M/ISO Außengewinde	21	21	21	21							21	21			
M/DIN Außengewinde					23	25	25	30	46	50			25	25	
M/SMS Außengewinde	20	24	24	35							24	24			
M/BS Außengewinde	22	22	22	27							22	22			
Gewicht [kg]* Unique TO	12.5	22.5	22.5	33	12.5	22.5	22.5	33	36	38	28	28	28	28	
Gewicht [kg]* Unique-TO mit externer Reinigung	13	23.5	23.5	34	13	23.5	23.5	34	37		29	29	29	29	

^{* =} ohne Tankflansch

Die hier enthaltenen Informationen sind korrekt zum Zeitpunkt der Veröffentlichung; geringfügige Änderungen jedoch vorbehalten.

Wie nehme ich Kontakt zu Alfa Laval auf?